Thirteenth Annual Conference on Carbon Capture, Utilization & Storage

Post Combustion Capture Systems / Solid Sorbents

Post-combustion CO₂ Capture Using Metal Organic Frameworks

Hari C. Mantripragada¹, Wenqin You² and Edward S. Rubin¹

Department of Engineering and Public Policy

Department of Chemical Engineering

Carnegie Mellon University

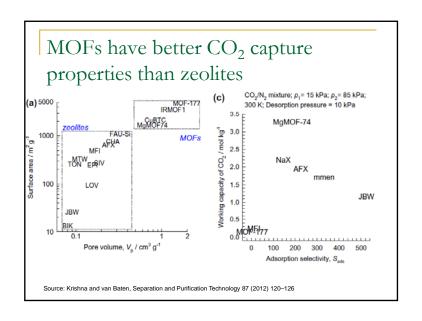
Pittsburgh, PA

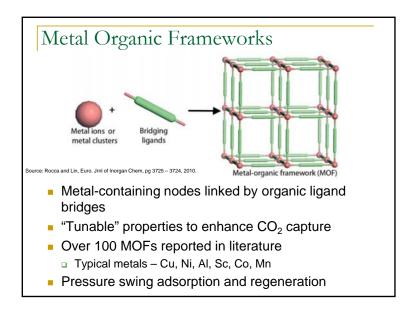
April 28-May 1, 2014 • David L. Lawrence Convention Center • Pittsburgh, Pennsylvania

Background

As part of GCEP-sponsored research:

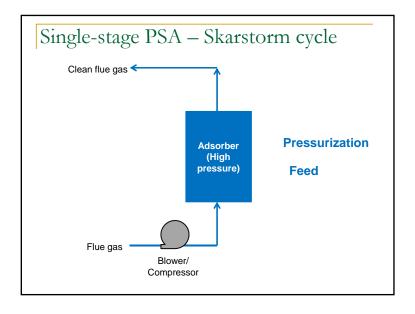
- Develop preliminary systems-level performance and cost models for evaluation of new materials for CO₂ capture
- Incorporate these models in a broader power plant systems model such as the Integrated Environmental Control Model (IECM) to make comparative analyses

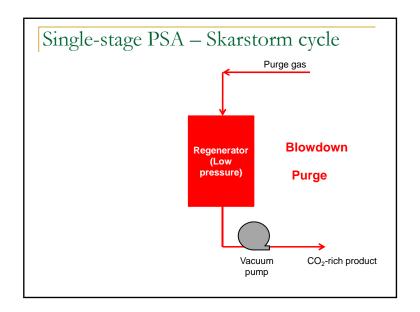

Objectives

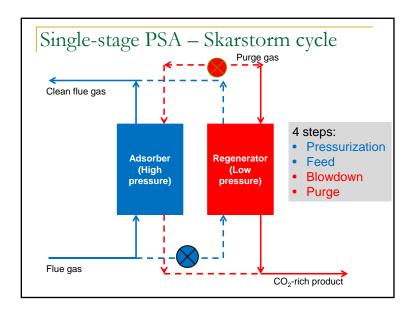

- Develop a preliminary performance model for evaluation of metal organic frameworks (MOFs) for post-combustion CO₂ capture
- Develop a preliminary thermodynamic model for pressure/vacuum swing adsorption (PSA/VSA)
- Compare the performance results with MEAbased CO₂ capture process

Work in progress!

Sorbents for CO₂ capture

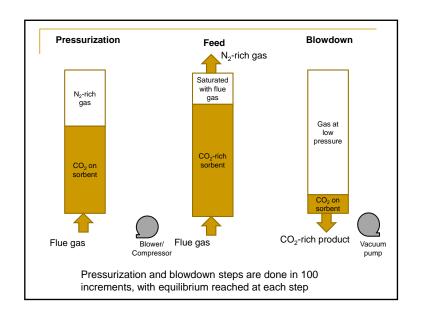

- Zeolites porous crystalline aluminosilicates
 - □ Eg. Zeolite13X, NAX
- Amine-functionalized chemisorbents
 - □ Eg. PEI, NETL-32D
- Metal organic frameworks (MOFs)
 - □ MOF-5, MOF-177, Mg-MOF-74

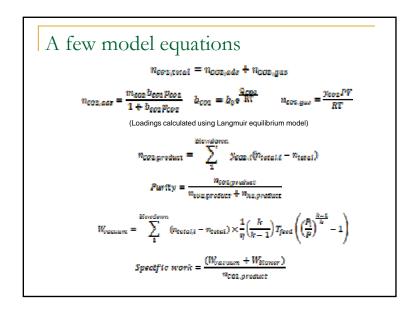


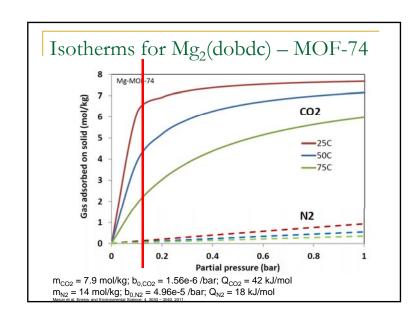


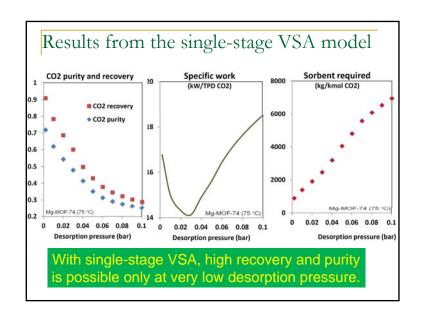
Pressure/vacuum swing adsorption (PSA/VSA)

- Adsorption occurs at high pressure (or at atmospheric pressure in VSA)
- Desorption occurs when pressure is released
- Compared with thermal swing adsorption (TSA)
 - Shorter cycle times
 - □ Longer sorbent life, but ...
 - □ Lower CO₂ product purity


Performance model


- For a given sorbent, desired CO₂ capture efficiency and operating conditions, estimate:
 - Amount of sorbent required
 - Amount of energy required
 - □ Purity of CO₂ product


Simplified PSA/VSA model*


- Three steps:
 - Pressurization (adsorption)
 - □ Feed (adsorption)
 - Blowdown (desorption)
- Atmospheric pressure adsorption, vacuum pressure desorption
- Equilibrium conditions
- Cyclic steady state
- Single-stage operation

*Maring and Webley, Intl Jnl of Greenhouse Gas Control, 15, pg 16 – 31, 2013.

Preliminary case study

- Base plant (modeled using IECM 8.0.2)
 - □ 650 MWg, Appalachian Medium Sulfur coal
 - □ 11,310 kmol/hr CO₂ in flue gas (12% by volume)
- CO₂ capture using Mg-MOF-74 and VSA
 - □ 90% CO₂ capture
 - Desorption pressure 0.002 bar
 - □ Isothermal at 75°C
 - CO₂ product compressed to 135 bar

Case study results

	Base plant*	MOF-VSA CO ₂ capture
Gross power out (MW)	650	650
Thermal energy input (MWth)	1564	1564
Net power out (MW)	608	362
Net plant efficiency (%HHV)	39	23

Using a <u>single-stage</u> VSA process, energy penalty using MOFs is much higher compared to conventional MEA-based CO₂ capture

Future work

- Improve the performance model
- Expand the model to incorporate multi-stage and advanced VSA cycles
- Explore better MOF materials
- Explore possibilities of combined PSA-VSA or TSA-VSA cycles
- Develop a cost model

Acknowledgement

 This work is supported by Global Climate Energy Project (GCEP) at Stanford University Thank you!

mharichandan@cmu.edu